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Quasisolitons and asymptotic multiscaling in shell models of turbulence
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A variation principle is suggested to find self-similar solitary solutigegerred to asolitong of shell model
of turbulence. For the Sabra shell model the shape of the solitons is approximated by rational trial functions
with relative accuracy 0©(10%). It is found how the soliton shape, propagation titpéfrom a shelin to
shells withn— o), and the dynamical exponeny (which governs the time rescaling of the solitons in different
shellg depend on parameters of the model. For a finite intervaltbé author discovereguasisolitonsvhich
approximate with high accuracy corresponding self-similar equations for an interval of times-frota some
time in the vicinity of the peak maximum or even after it. The conjecture is that the trajectories in the vicinity
of the quasisoliton$with continuous spectra @) provide an essential contribution to the multiscaling statis-
tics of high-order correlation functions, referred to in the paper amsgmptotic multiscalingrhis contribution
may be even more important than that of the trajectories in the vicinity of the exact soliton with a fixed value
Z,. Moreover there are no solitons in some regions of the parameters where quasisolitons provide a dominant
contribution to the asymptotic multiscaling.
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[. INTRODUCTION Yamada(GOY) model[1,2]. Similar to the Navier-Stokes
turbulence the scaling exponerits in the Sabra model ex-
The qualitative understanding of many important statisti-hibit nonlinear dependence gm Similar anomalies were
cal features of developed hydrodynamic turbulefioelud-  previously found in the GOY mod¢L,2]. However the Sa-
ing anomalous scalingmay be formulated within the bra model has simpler correlation properties, for example,
Kolmogorov-Richardson cascade picture of the energy transsecond-order correlation functions of are diagonal in the
fer from large to small scales. For a dynamical modeling ofshell indexegwhich is not the case in the GOY mogleAs a
the energy cascade one may use the so-called shell modelsresult the Sabra model exhibits cleaner scaling behavior in
turbulencd 1-9] which are simplified versions of the Navier- the inertial range(without spurious for the Navier-Stokes
Stokes equations. In shell models the turbulent velocity fieldurbulence “period-three oscillationy” The equations of
u(k,t) with wave-numberk within a spherical shelk,<k  motion for the Sabra model read
<Kp41 IS usually presented by one complex function, ad
“shell velocity” u,(t). To preserve scale invariance the shell GU, . * *
wave-numbers,, are chosen as a geometric progression  dt = 1(@Kn+1Un+2Un 1+ DKyl 1Un— 1 = CKn—yUn—1Un—2)

Ky=Kko\", (1) —vkau,+f,, ()

where\ is the “shell spacing” and £n<N. The equation a+b+c=0. 4)
of motion readsdu,(t)/dt=Q,,, whereQ, is a quadratic
form of u,(t) which describes interaction of neighboring Here the star stands for complex conjugatibnis a forcing
shells. Clearly, shell models can be effectively studied byterm which is restricted to the first shells, ands the “vis-
numerical simulations in which the values of the scaling ex-cosity.” Equation(4) guarantees the conservation of the “en-
ponents can be determined very precisely. Moreover, unlikergy” E and “helicity” H
the Navier-Stokes equations, the shell models have tunable
parameterglike \) affecting dynamical features of the en- B 5 _ al 12
ergy transfer. This allows one to emphasize one after another E= ; unl*, - H= ; (@/c)"uy|*, )
different aspects of the cascade physics and to study them
almost separately. in the inviscid (*=0) limit.
The statistics oli, may be described by the moments of  |n this paper we will consider self-similar solutions of the
the velocityS,(k,) which are powers ok, Sabra shell model&) in a form of solitary peaks-selitons
The important role of intense self-similar solitons in the sta-
Sp(kn)=(Jun|P)ck, fhoc )~ (2) tistics of high-order structure function was discussed in Refs.
[10-12. The two-fluid picture of turbulent statistics in shell
in the “inertial range” of scalesn, <n<ny. Heren, isthe  models and corresponding “semiqualitative” theory in the
largest shell index affected by the energy pumping apés  spirit of Lipatov's semiclassical approafh3] was suggested
the smallest shell index affected by the energy dissipation. in Refs.[14,15: self-similar solitons form in and propagate
In the paper, we employ the so-called Sabra shell modehto a random background of small intensity generated by a
[9] which is a modification of the popular Gledzer-Okhitani- forcing which has Gaussian statistics afdcorrelated in
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time. Accounting in the Gaussian approximation for smallmum or even after it. Configurations of the velocity field in
fluctuations around self-similar solitons the authors ofthe vicinity of these solutions may be callgdasisolitons
[14,15 reached miltiscaling statistics with a narrow spec-My conjecture is that the quasisolitons with continuous spec-
trum of z In the present paper the multiscaling statistics oftra of z may provide an even more important contribution to
high-order correlation functions will be referred to asthe asymptotic multiscaling than the contributions from the
asymptotic multiscaling trajectories in the vicinity of an exact soliton with fixed scal-

Preliminary direct numerical simulations of the Sabraing exponentz,. The concept of quasisolitons and proposed
shell model[16—-18 shows the asymptotic multi-scaling is a in this paper the dependence of their propertied@tlows
consequence of much reacher dynamics of shell models. Fois to reach a qualitative understanding of the behavior of
example in theb interval[ —1<b<—0.7] and atA\=2 ex- intense events for various values bf observed in direct
tremely intense self-similar peaks on a background of smalhumerical simulation of the Sabra modé6-18§.
fluctuations was indeed observed. Each particular peak has In conclusion, Sec. V | summarize the results of the paper
well-defined time-rescaling exponeny, however from peak and presents my understanding of a way ahead toward a
to peak the value, essentially varieg17]. In the region realistic theory of asymptotic multiscaling for shell models
[—0.3<b<0] the level of intermittency is much smaller, of turbulence which also may help in the further progress in
intense solitary events vanish, however turbulent statistiche description of anomalous scaling in the Navier-Stokes
remain anomalouglL7,18. Only at the intermediate value of turbulence.
b~ —0.5[16] intense self-similar peaks with a narrow spec-
trum of dynamical exponers,=0.75+0.02 was found16].

These observations may serve as a starting point in devel-Il. BASIC SELF-SIMILAR EQUATIONS OF THE SABRA
oping a realistic statistical theory of asymptotic multiscaling SHELL MODEL
which will take into account a wide variety of relevant dy-
namical trajectories of the system not only in the vicinity of
the well-defined solitons. The present paper is a first step in In the inertial interval of scales the Sabra equation of
this direction and is organized as follows. motion (3) has formally five parameterk;, A, a, b, andc.

The analytic formulation of the problem is presented inThey enter in the equation in four combinations: (koa),
Sec. II. For the general reader, | describe a self-similar forn{kob) and c), therefore by the rescaling of the parameters
of solitary soliton “propagating” through the shelkSec. a,b, andc we getk,= 1. Without loss of generality we may
I1 B). | derive the “basic self-similar equations” for the soli- considera>0. A model with negative turns into a model
tons (Sec. 11 O, consider the relevant boundary conditionswith positive (Kpa) by replacingu,— —uy,. By rescaling of
(Sec. Il D and analyze the asymptotic form of soliton tails the time scalé— (at) we get a model witta=1. The pa-
for infinite times(Sec. Il B. rametersa, b, and c are related by Eq(4). Thus we can

Section Il is devoted to a variation procedure for theexpress=—(a+b)— —(1+b). With this choice only two
problem. | suggest in Sec. Ill A a simple positive definite parameters of the Sabra model remain independbeamd\ ,
functional #(z) =0 such that the exact solution correspondsby construction of the model>1. A typical choicex=2
to F(zy) =0. The analytic form of trial functions is discussed will be considered in this paper.
in Sec. llIB. In Sec. Il C, we will see in detail how the Note that for @/c)>0 (which isc>0 orb<-1 ata
variation procedure works in the case of the “canonical” set=1) the model has two positive definite integrals of motion
of parameters\=2, b=—0.5. The characteristic value of which are quadratic im,: the energy and “helicity”(5). In
F(z), Fy, is of the order of unity. The minimization of(z)  this case(as it was discussed in Ref6—8|) one may di-
(with respect to the propagation time and soliton width, withrectly apply the Kraichnan argument for the enstropy and en-
proper choice of trial function without fit parameters and atergy integrals of motion in two-dimensioné@D) turbulence
experimentally found value,=0.75[16]) gives F,i,(0.75)  and conclude that in shell models fluxes of energy and “he-
~0.08. Step-by-step improvement of the approximation idicity” will be oppositely directed: “direct” flux (from small
reached by a consecutive addition of fit parameters whiclio large shell numbens) will have an integral of motion for
affect a shape of the soliton. With ten shape parameters, thehich largen shells will dominate. Therefore fora(c)>1
value of Fr,(z) may be as small as 16. The resulting (which is —2<b<—1 ata=1) one expects direct flux of
“best” values of the shape parameters give approximate so*helicity” and inverse flux of energy, like in 2D turbulence.
lutions of the basic equationormalized to unity in their This reasoning predicts direct flux of energy far¢) <1 (or
maximum with local accuracy of the order of 16. b<—2 ata=1). In both cases one cannot expect a statisti-

Section IV presents results of the minimization on trial cally stationary turbulence with flux equilibrium because one
rational functiongratios of two polynomialswith ten shape of the (positive-definitg integrals of motion will accumulate
parameters, and their discussion. First, in Sec. IV A, weon first shells without a mechanism of dissipations. There-
compare and discuss tlredependence ofF,,(z) for b= fore one expects an energy-flux equilibrium with direct flux
—0.8, —0.5, and—0.3 (at A =2). An important observation of energy like in 3D turbulence only for negative ratiéc
(Sec. IV B): there are intervals affor which basic equations (orb>—1 ata=1) when the “helicity” integral is not posi-
do not have self-similar solitary solutions for all timeoli-  tive definite and Kraichnan’s arguments are not applicable.
tong but may be solved approximately for intervals of times  More careful analysis shows that only the regied<b
from — oo up to some moment in the vicinity of soliton maxi- <0 (ata=1) may pretend to mimic 3D turbulence. For

A. “Physical” range of parameters
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>0 when (~c)>a=1 the existence of the “helicity” inte- Consider next the amplitudes of the solitons. Denote as
gral (even not positive definildeads to period-two oscilla- U, max the maximum of the velocity in thaeth shell which
tions of the correlation functions which are increasing with also rescales with another expongnt

and are “unphysical” from the viewpoint of 3D turbulence.
One can see this from the exact solution for the third-order
correlation function

L’ln,max:l))\iyn- (13)

In order to relate the exponertsandy we sketch the basic

Sa(Kn)=ImM(up-_1UnUy . 1), (6)  Egs.(3) having in mind only dimensions and' dependence
which in the inertial interval of scales reaf (duy /dt) ko "U2.
1 — Jc\"
Ss(kp) = K=o~ €+ o a (7) Consequently‘,l';1~ko)\“un'max and therefore
n

y+z=1. (12)

Here e and & are fluxes of energy and “helicity,” respec-

tively. For any small ratiad/ e and (c/a) < —1 the correlator
S;(k,) (and presumably many othémwill have period-two

oscillations which increase with . Therefore in this paper
we will consider only the region

Finally we may write a self-similar substitution in the form

Up(t)=—ioN"YM[(t—t,)vkoh*"]. (13
With this choice of a prefactor<{i), the real and positive
functionf will give a positive contribution to the energy flux
(6) in the inertial interval of scales

—1<b<0,
traditionally keeping\=2.

B. Self-similar form of “propagating” solitons e=2kn(a—c)Im(ui_juiun;1). (14

Self-similar form of “propagating” solitons is based on
very general features of shell models of turbuleftbe qua-
dratic form of nonlinearity with the amplitudes of interaction  \yie introduce a dimensionless time for théh shell as
proportional toA") and therefore is not specific for the par- fg|jows:
ticular shell models. For the Obukhov-Novikov and GOY
models the substitution was found in Ref$2,14). In this
section we briefly review the physical considerations leading
to the self-similar substitution in the Sabra shell model ofThe right-hand sidéRHS) of the equation ford f(7,)/d7,
turbulence and introduce corresponding notions. will involve a functionf with argumentsr,,.; and 7,,+,. All

Self similarity in our context means that solitons propa-these times may be uniformally expressed in terms of a di-
gate through shellgiithout changing their form“Propaga- mensionless time
tion” means that the timé, at which peak reaches its maxi-

C. Self-similar equation of motion

Th=(t—t,)vko\*". (15

mum increases with, in other words, the largen, the later To=1/(N?—1) (16)
peak reaches this shell. Intuitively this picture corresponds to
the energy transfer from shells with smalto large ones. as
Self-similar propagation of the solitons may be formally
described by the same functidfir,)) of dimensionless time Toe =N — 1)+ 79, S=1,2. (17)

7, Which is counted from the time of the soliton maximuyn
and normalized by some characteristic time ridhn shell T,

To=(t—t)/T,. 8
The timeT, has to be rescaled with as follows:
T,=TA 2", T=1Ukgy), 9

wherezis adynamical exponergnd the characteristic tinie
is organized from the characteristic velocity of the soliton
and the wave vector of the probleky. The time delayg,
—1,_4 also have to rescale liKg,

tho1n=th—th_1=7TA 2", (10)
where thepositive dimensionless timer is of the order of
unity.

The characteristic time,, is related to the timé, .. which is
needed for a pulse to propagate from ttike shell all the way
to infinitely high shells

> tmmi1=ToA "7T. (18)
m=n

th e

Substituting Eq(13) into Eq.(3) and using relationshifil7)
one gets the “basic equation” of our problem

df(7) B

D(n)= ar

C(7). (19)

Here we replaced,— = and introduced a “collision” term
C(7) according to
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C(r)=—aN¥ 2f*[\%(7— 7o) + rol f[NZX(7— 70) + 7]
— CNZ [N %(r— 10) + o] f[N 27— 7o) + o]
+(a+ ) F* [N 27— 7o) + 7ol f[NX(7— 7o) + 7).
(20

D. Boundary conditions of the basics Eq(19)
The boundary conditions at=*+ for a soliton are ob-
vious

f(+)=0. (21)

By construction the soliton reaches a maximumr&atO.
Therefore

df(7)
dr

-0. (22)
=0

Introduce a characteristic width of a solitordldccording to

d?f(7)

2
d2 -

=0

(23

It is convenient to introduce a time varialde&nd a function
g(s) with the unit width

f(r)=g(s), s=rd, (24
d?g(s)

=-1. 2

o |, 9

With this time variable, the equation of moti¢h9) reads
D(s,z,50,d)=q(s)—((s,z,50) =0, (26)
where

q(s)Edm,

ds (27)

SOE ’Td,

S—Sy
C(s,z,s9)=(a+c)g* ( T + so) gN*(s—5Sg) +So]

— a3 2g* [N%(s—sp) + Sp]g[ A #4(S—Sp) + So]

s—s s—s
—c)\2‘3zg(70+so g( )\220+so). (28)

Functiong(s) should vanish at infinite times

lim g(s)=0, (29

s——

limg(s)=0.

S—®

(30

The boundary conditions a&t=0 read
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d?g(s)
" d¢?

. dg(s)
g(o)_11 dS

=-1.
s=0

(31)

s=0

Note that the problem to find a form of the self-similar soli-
tons may be divided into two independent problems: for
times smaller and larger thag. Indeed, Eq(26) for times
s<sy does not contain functions for times>s, and vice
versa At the boundary between these regions E2f) re-
duces to

d
dso

1

=dpy,
g(sg)| P

po=a(\3¥2—1)—c(1-\%27%), (32

In our discussiora>0, c<0, A>1, andz>2/3. Therefore
po>0 anddg(sy)/dsy<<0. It means that the timg, is larger
than the times=0 at whichg(s) has a maximum, i.es,
>0. As we notedand see Eq(18)], sy is the time which is
needed for a pulse to propagate from thth shell to an
infinity high shell. Therefore the relatiosy>0 agrees with
our understanding of the direct cascade.

So, we will divide the time interva] —oo<s<<w] into
two subintervals] —o<s<sy] and[sy<s<x]. For[—o
<s=<s5p] the maxima of the solitons in all shells are in the
inertial interval of scales and very high shells are not yet
activated. We will refer to this interval as amertial interval
of times In the second time interval, fas>s, high-shell
solitons already reached the dissipative interval of scales. We
will refer to this interval as alissipative interval of times
Generally speaking, in this interval one has to account for the
viscous term in the equation of motion. In this paper we will
restrict ourselves to the inertial interval of times.

It was shown in Ref[12] that equations similar to Eq.
(19 with similar boundary conditions can be considered as
nonlinear eigenvalue problems. They have trivial solutions
f(s)=0, but they may have nonzero solutions for particu-
larly the values ofz=z; andsy. Below we will find non-
trivial solutions of our Eq(26) that satisfies condition&®9)
and (31) and for whichz, lies in the physical regiog <z
<1.

E. Qualitative analysis of self-similar solutions ats— =+ «

In this section we will analyze time-dependent solutions
of Eqg. (3) which are more general than a Kolmogorov-41
(K41) and have a form of solitary pulses—solitons. We will
show that the solitons have longpowerlike tails g(s)
«s*+ ats— +oo, One way to find the asymptotic solution of
Eq. (26) is to balance the exponents in its left-hand side
(LHS) and RHS. Forg(s)xs™* this gives immediatelyx
=1. Thus,g(s)=D,/s. Equating prefactors in the LHS and
RHS of the Eq(19) we get

o —\?d
Y a—aa)(Z-1)

(33
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The coefficientD, appeared to be real and, in the actual {h=z+(1—=2)n, at n>ng=1/y. (40
range of the parametera &1a>0,c<0), negative. For the
positive functiong(s) this asymptotic form describes the  For z=% Eq. (39) gives the K41 slope which is the

front part of the pulséat negatives). So largest possible one. Value=1 corresponds to the largest
possible intermittencyzero slopgé Therefore we may con-
) —A\?d (34 sider Eq.(38) as the “physical region” of the dynamical
S)= y  S——®,
g S(a—cAB)(A2—1) exponentz.
Another approach is to assume that in the equafipis) lll. VARIATION PROCEDURE FOR SOLITONS
s~ *] the exponentx<1l. Then, the LHS will behave as AND QUASISOLITONS

1/s'™* while the RHS will be proportional to §7*. In the
limit s—o0 and atx<1 one may neglect the LHS of the Eq. ) . ) ] )
ing. Instead one requires that the prefactor in the RHS, g(s):
in theC(s) term|] must vanish. This gives the following equa-

. S
thﬂ for X f{g(s)|21501d}5 \/J’ ’ dS[D(5121501d)]21 (41)
0=ar¥(1"0"24c\2"30 0 —(a+c). (35

A. Suggested functionals

_ which also depends on the parameters of the probleh z,
Denoting S, andd. By construction, the functiona{g(s)|z,sy,d} is
\321-%)-2 non-negative and equal zerogfs) is a solution of the prob-
A=N ' (36) lem (26): D=0. Clearly, the functional(4l) is not unique.
For example, we may use a more general, “weighted” func-

we have, instead of E¢35), the square equation fox tional

aA?—(a+c)A+c=0,

Ho(s)|z,sp.d}= \/fsidsv\/(s)[D(S.z,sO,d)]z,

with the roots
(42)

A]_: 1, A2: C/a..
with some positive “weight” functionW(s)>0. This func-

In the chosen region of parametexs §nd a have different  tjonal is also positive definite and also equals zerg() is
signg A,<0, which contradicts the assumption of real  a solution of the problen(26).

Therefore the only rood ;=1 is relevant. According to defi- One can easily find many other functionals giving ap-
nition (36) this gives proximate solutions of the problem. The functional
Hda(s)|z,sq,d} has an advantage of simplicity. Its minimi-
Xy=y=1— 3 (37) zation (with a proper choice of the trial functiprieads to a
3z solution of the problem with high accuracy. For example,

_ ~with trial functions discussed in Sec. Ill B the relative accu-
Here we used notatioiy for the exponent of the long posi- racy (with respect to the value of a soliton maximyiis

tive tail of the pulse introduced ifil2] for the Novikopv-  O(10™3). Therefore we will restrict the present discussion to
Obukhov shell model. As we see, the relati@?) is model  the simple functionalF{g(s)|z,so.d}.

independent. Actually this equation is a consequence of the
conservation of energyreflected in the constrairg+b+c
=0) and the fact that the shell models account only for
interaction of three consequent shells. Clearly, the relevant For simplicity, in this paper we will seek only reakith-
region of y is 0< y<1. This corresponds to out nontrivial phasessolitons. Complex solitons will be dis-
cussedwithin the same schemelsewhere.
My suggestion is to use different trial functions for nega-

B. Suggested form of trial functions

3<z<L. (38 tive and positive times, both satisfying boundary conditions
(31) at s=0. Denote ag),; (s) the trial functions for posi-
We conclude that fog—s + tive times withm shape parameters. Let the functigg. (s)
satisfy condition(32) ats=s,. This condition is a constraint
g(s)=D,/s?, (39 on the time derivative of @, (s). Having also in mind that

Om () is defined on the intervdD <s<<sy] with sp~1 it is
with a free factoD, which has to be determined by match- convenient to choose d4,.(s) as a polynomial ins. The
ing the asymptotic$39) with a solution in the regios~s,.  first (free) term of expansion is one becaugg, (0)=1. The
It is known [11] that the self-similar core of the function second term«s) vanishes due tdg(s)/ds=0 ats=0. The
g(s) gives rise to a linean dependence of the scaling expo- next term must ba?/2 due to the restriction on the second
nent{, of the nth-order structure function at large derivative(31) at s=0. In order to satisfy conditiof32) at
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s=sy we have to account at least for a cubic term. Therefore TABLE I. Optimal values of §;,d) for z=0.75 and values of
the simplest function of this type, (s) without fit param-  Fminm for z=0.75, 0.85, and 0.95. Number of the shape parameters

eters takes the form is 2(m+1), m=0, 1, 3, and 5.
=1+ 52+ s? (po ) o 3 m=0 m=1 m=3 m=5
=1+ >+—|—-s
Jor 2 3g2ld z=075 s 036 036 055 0517
2=0.75 d 1.19 1.18 159 1.49

If needed we can add fit parametgrs, p,, etc., accounting z=0.75 Frinm 0.0811  0.0675 0.0176  0.00234
for termsocs*, «s®, etc. Accordingly, a trial function wittm ~ z—0 g5 Fwinm  0.2047 01014  0.0284 0.0092

shape parameters takes the form z2=0.95  Fpnm 03471 01377 0.0780  0.0650

2 3 m
(s)= 1+S—+S— @—s - p
Im+ 2 35(2) d 0 =1 Pi In actual calculations it would be sufficient for our purposes
. . to account for five shape parameters in the function
m pjsj+3 ]
=1(j+3)sh? () 1+ QS+ 0p8%+q,s° “8
95-(8)= .
In most cases it would be enough to uge,. (s) with five 1+0q;5+ (0t 3)s+0as+gss?

shape parameters.

) Denote asgy,_(s) the trial functions f_or negative times The function ge_(s) reduces togs_(s) by choosingas
avingmshape parameters. These functions have to approxi- —0and t L Oom Gam oz Qo= 0

mate the basic equation on the infinite time interval from ds=0 and tog; _(s) atq,=0ds=0s=0ds=0.
—o to 0. Therefore their analytic form is a much more deli-

cate issue. Analyzing the form of the peaks observed in di- C. Test of the variation procedure

rect numerical simulation$17], | have found a function In this section we will see in detail how the variation

9:-(s) with one fit parameteq procedure suggested above works for the “canonical” set of
parameters\=2, b=—0.5. Denote asFy,,m(z) the result
T (5)= 1-sva/(q—1) (449 ©of aminimization of the functionaF{g(s)|z,o,d} acting on
v [1-s/\q(gq—1)]% the functionsg,,,- (s) at givenz (with 2m+2 shape param-

. _ eterg. The parameters in the minimizations are: the propaga-
which allows us to reach accuracy of solution of E26) of  tion time s,, width parameterd, m shape parameters for

O(10°?). This accuracy would be enough for future com- negative times dj, . . . .d,,), and m shape parameters for
parison of the “theoretical” shape of a pulse with that found positive times p;,- - -,py)

in direct numerical simulation of the Sabra model. However

this function does not have the correct asymptotic behavior Fminm(2)= min Fg(s)|z,50,d}. (49
(34) for s— — o0 and is inconvenient for successive improve- gj .pjlso.d

ments of the approximation.

Instead ofg;_(s) for negative time | use in the regular Table | displays the found values afninm(z) for z
minimization procedure a ratio of two polynomials oth =0.75,0.85, 0.95 anth=0, 1, 3, 5.
andn+1 orders. This ratio hasr2-2 free parameters. After Consider first the case=0.75, which corresponds to the
accounting for three condition@1), just (2n—1) param- dynamical exponent of intense self-similar peaks observed in
eters remain free. Simple function of this type with=1,  our direct numerical simulation of the Sabra shell model
which also agrees with asymptot(84), has no free param- [16]. At m=5 we have reached,(0.75)~2.3x 10 *.

eters This value is more than 200 times smaller than the charac-
teristic value of the functional before minimizatioi,
~ 2+D;s ~0.5. This allows us to hope that the minimization using the
9o-(8)= > Dot (49 functions gs. (s) with total number 21=10 of the shape
! parameters will be sufficient for most applications.
We will discuss even more simple rational function Note that for some purposes we may use less than ten
shape parameters. For example “optimal” valuesgpandd
go_(s)=[1+3s?]" L (46)  shown in Table | begin to converge far=3. Therefore for

o _ a reasonably good estimate gf andd we may use the trial
Actually a better approximation may be achieved by a funcfunctionsgs.(s) having six shape parameters. Moreover, the

tion similar to Eq.(45) with one free parameter; same level of accuracy as with=3 may be achieved just
with two shape parameters|,(p;) if we replaceg;_(s) by
g1 ()= 1+ass _ 47 9;_(s) and, (which is less importatgs.(S)—Ji.(s).
1+qs+3s? Minimization with g,_(s) andg, . (s) gives
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FIG. 1. Trial functionsg(s) and q(s)=d[dg(s)/ds] for A
=2,b=-0.5, andz=0.75. Solid lines correspond to the full mini- 0.002
mization (m=5), dashed — tan=3. The same dashed lines show
results of the minimizatioi50) with only two shape parameters.

0.001
min Fg(s)|z,s9,d}~0.0197, atz=0.75, /\ / \ /\
Sp,d,d,p1 Q 0

$o~0.54, d~1.57, ¢~859, p;~-—0.44. (50) / \/ \/ \}

-0.001
Another example in which we may use less then ten shape \/

parameters for a reasonably good description is the shape ¢ -0.4 -0.2 0 0.2 0.4

solitons, g(s). Figure 1 displays functiong(s) and q(s), §

Eq. (27) for m=3 (dashed lingsand form=5 (solid lines. FIG. 2. Local deviatiorDy,, «(s,0.75), Eq.(26) vs s for A=2,

We see that for comparison with experiments we can use g— — 5. Upper panel: regior 10< s<s,. Lower panel: blow up
simpler form withm=3. In Fig. 1 are also plotted by dashed of the region—s,<s<s,.
lines functionsg(s) and q(s) resulting from minimization

(50) with two shape parameters. They are indistinguishable}_ (0.95) cannot be much smaller that 0.06 even for very
from the corresponding functions having six shape paramy Mnm = '

largem. One may conclude that fa= 0.95 there is no “glo-
eters. bal” solution in the interval —o<s<s;]
Note that the minimal values of the function&hyn,m(2) Nevertheless, the local deviatidm-O (.s 0.95) shown in
characterize the “global” accuracy of the approximation in Fig 31 i ’ I i th m‘gg M in th
the whole interval ofs, [0,sq]. It would be elucidative to '9. 3 1S quite small, say In the reg - Moreover, in the

: « S . regions<s, ~—2 the characteristic value of the deviation
?L:izlaii %(;ozcasl dde)v;act;(osr; _vg(]::r; ??y be described by the Din 5(S,0.95) is more or less the same as #er0.75 where
16390y - 1£320) -

According to Eq.(26), the local deviationD(s,z,s,,d) we have an approximate solutigsoliton) in the whole re-
has to vanish for aI.h Dénote asD,. (s.2) the ('Jle,vigtion gion s<s;. Consequences of this fact will be discussed later.

D(s,z,59,d) at optimal values 0§, ,d, and 2n shape param-
eters. The deviatioDp,, (s,0.75) is shown in Fig. 2. Ex- IV. SOLITONS, QUASISOLITONS, AND ASYMPTOTIC
cluding the small region |s|<0.1 the deviation MULTISCALING
Diins(S,0.75)<10"3, i.e., is more than 500 times smaller
than the maximal value ajf(s) shown in Fig. 1. This serves
for us as a strong support of the conjecture that by adding In this section we discuss thedependence of the func-
more and more fit parameters one can reach smaller artibnal 7, 5(z) and of the optimal values &, andd. These
smaller values ofF,, i.e., lim, . Fnn,m=0 and forz  functions forb=-0.5 —0.8, and—0.3 are displayed in
=0.75 one can find a true solution of the problem. The curFigs. 4, 5, and 6, respectively.
rently available personal computers allow us to find solutions For b= —0.5 (Fig. 4) the z dependence of the functional
with Fin 10~ 102 and D<2x 102 during one—two hours has a minimumZ,, 5(z)~2x 10 3 aroundz~0.734. This
of calculations using the standard package of Wolfram’sminimum is quite flat. For exampleF,5(z)<F,=2.5
MATHEMATICA . x 1072 for z within the interval [ Zmin=0.71Zma=0.76].
Consider now a different value af=0.95. As follows Note that forb=—0.8, (Fig. 5 the saméarbitrary) level F,
from the Table I, there are no jumps in improving the ap-exceedsF,, () for zin the wider interva[0.71,0.84. In
proximation for m=2. For z=0.95 the ratio the same time fob=—0.3(Fig. 6) there are no values af
Fmina(2)/ Frmins(2)=2 while for z=0.75 the same ratio for which F,52z)<F, . A natural interpretation of these
Fmin1(2)/ Frins(2) =28. It is very reasonable to expect that facts is that ab=—0.8 one can meet in the velocity realiza-

A. zvalleys of the functional F, 5(2)
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FIG. 3. Local deviatiorD,,, 5(s,0.95) vssfor A\=2, b=—0.5,
andz=0.95 with optimal set of ten shape parameters. Upper panel: FIG. 4. The z dependence of BFins, 10°Fn in10 (Upper
region —10<s<s,. Lower panel: blow up of the regions,<s  Panel, ands,, d (lower pane), for A =2, b=—0.5. Vertical dashed
<S,. lines shows K41 value af=2/3. Horizontal dashed line in upper

panel corresponds to chosen valuéZp=2.5. Points for 167-‘mm5

. ) . ) with 0.72<z<0.76 are below this level.
tion (of the Sabra modglu,(t) intense solitons with values

of z in a quite wide interval(for example, in the interval
[0.71, 0.84 mentioned above at b=—0.5 the “allowed”
interval of z is more narrow(say,[0.71, 0.78) and forb= The analysis of the local deviatioy, m(s,z) presented
—0.3 one can hardly meet intense solitons at all. As we willin this section supports a quasisoliton scenario of asymptotic
discuss below, this statement is in a quantitative agreemefultiscaling. Let us chosb=—0.8 for which we found in
with the preliminary results of the numerifs7]. Fig. 5, (upper panglthe wide deeg valley of the functional
Clearly, we are not talking about particular valueszgf, 7 mins(Z). Compare thes dependence 6Dy m(s,2) for the
andz,..,, for example because the boundary legel=2.5 value ofz=0.81, \_/vh|ch corresponds to the right local mini-
X103 was chosen arbitrarily. Moreover, the objeats; , mum of the functional and for two slightly larger values of

. : ' =0.84 and 0.88. The local deviatiofi%,,;, n(s,z) are plot-
Zmax do not have explicit sense. The actual conjecture is th g~ oor _ S nm
the functionalF i, m(N,b,2) is correlated with grobability ted in Fig. 7 forz=0.81 by solid lines, foe=0.84 by dashed

; ‘ lit ol h ai d ical lines, and forz=0.88 by dash-dotted lines. The upper panel
0 meet a soliton or quasisoliton with given dynamical eXp0-gq,yss interval of a left tail the soliton up to its maximum:
nent z in the realization(for given A\ and b): the smaller

X [ —10<s<0]. The lower panel showsinterval around soli-
value of Fiyin m(2) (at large enougim), the larger this prob- 4, maximum: — 1<s<s].
ability. From this point of view the two following scenarios It was mentioned that the valug ,—0.81 corresponds to
are statistically almost equivalent: The first one may Dene right local minimum of the functional. The local devia-
called amultisoliton scenariothere is a discrete spectrum of tion D, «(s,0.81) is about 210 2 in the s region
solitons with some close set of exponeats;, oz in the  [—1], see solid line in Fig. 7, lower panelFor s<—2
interval[ Zpn, Zmad - One can imagine that this is the case by (the upper panglthe local deviation is almost ten times
looking at Fig. 5(upper panglwhere the functionF,5(2,  smaller, about 2.8 10 *. The valuez=0.84 does not corre-
—0.82) has two minima at,,~0.77 andz;,~0.81. The spond to z minima of the functional: F,s(0.84)

B. Local deviations and quasisolitons

second one will be referred to agjaasisoliton sceneriwith ~2Fmins(0.81). The larger value aof,, 5(0.84) is mostly
continuousz spectrum of quasisolitons in soneide) inter-  determined by the region of positigavhere| Dy, 5(s,0.84)
val of z. exceeds 0.01, which is essentially larger than the local devia-
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FIG. 5. Thez dependence of £0F,5, 10PF 5 (Upper panel FIG. 6. Thez dependence of 205, 10PFin10 (UppEr

andsy, d (lower panel for \=2, b=—0.8. Vertical dashed line pane), ands,, d (lower panel for \=2, b=—0.3. The vertical
shows K41 value oz=2/3. Horizontal dashed line in upper panel dashed line shows K41 value of2/3. Horizontal dashed line in
corresponds to chosen value>) =2.5. Points for 1(3.17-'min,5 with upper panel corresponds to chosen valu&F,G=2.5. All points for

0.71<z<0.84 are below this level. 103~7:min,5 exceed this level.

tions in this region az=0.81,[compare dashedz&0.84)  Figure 8 compares the local deviatidd for unweighed
and solid £=0.81) lines in the lower panel of Fig.].7Un-  (solid lineg and weigheddashed linesfunctionals. Again,
expectedly, in the regioa<<—1 (the upper panglthe local the difference between these two approaches is minor.

deviation atz=0.84 is even smaller than that atz,, A natural interpretation of all these facts is as follows: for
=0.81. In other words, in this region the reached approxi- some discrete values af=z,; (say forz,,;~0.734 atb=
mation is better for value=0.84 than that forz=0.81. —0.5 andz;,~0.78, z,,~0.81 atb=—0.8) the variation
Dash-dotted lines in Fig. 7 show that the local deviation forprocedure allows us to find better and better approximation
az=0.88 is essentially larger than far=0.84 and 0.81. to the solution in the global sensénm(zo;)—0 in the

Let us show that these qualitative results are independeilimit m—ce. Clearly in these cases solutigifs) exists also
of the particular form of the function&#1) which we chose. locally: the maximum of the local deviatioPy, m(S,20;)
For that consider the weighed functiorid) with the weight  also goes to zero in this limit. In means that there are self-
fuction similar solitons in the shell model with scaling exponents
) Zyj. For other values of there is no global solution. It
W(s)=[(s=sp)"+ 1], (51 means that fom— oo the limit of Fy,  is finite, but may be
small enough. Nevertheless for a wide regionsefs, (in
which is of the order of unity in the vicinity of the soliton the examplez=0.75, b=—0.5 the value ofs, ~—2) the
maximum and increases toward the front tail|g}$Y. At y local deviationDy,i, m(S,2) is very small and Eq(26) may
=0 one recovers the uniform weigii{(s)=1. For positive  be “almost solved.” We may say that the variation procedure
y the weight function emphasizes the left tail, i.e., the regiorfinds “quasisolutions,” which approximate the equations of
s<1. The value ofy has to be smaller thah, otherwise the motion with very good accuracy starting from the “time of
sintegral in Eqg.(42) diverges. It is reasonable to choose anappearance of a solitors{- —) until some times, . The
intermediate value of=1/4 and to repeat the minimization value ofs, may be close to the time of the soliton maxi-
procedure. The resulting changes in the valuesyofd, and  mum. Remember, that in the real shell system intense events
shape parameters were minor. For exanfide A\=2, b= form in a random background of small fluctuations where
—0.8, z=0.84) s,=0.7506—-0.7478, d=1.2645-1.2618. one may meet configurations corresponding to initial condi-
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tions of these “quasisolutions.” In that case the system be-
gins to evolve along the quasisolutions up to some time
abouts<s, where the quasisolution stops to approximate < | have suggested a variation proced(esic functional
well the self-similar equation of motion. These pieces of tra-and trial functions for an approximate solution of equations
jectory are referred to aguasisolitons After the times,  for the self-similar solitary peakolitons in shell models
trajectory has to deviate from the quasisolitons, presumabl@f turbulence. The rational functions with ten shape param-
exponentially fast. Quasisolitons look like the front part of gters approximate solitons in the Sabra shell model with rela-
solitons and may include their maxima. tive accuracy 0(10%).

The main message is thitte quasisolitons have a con-  * FOr the standard set of parametexs<2, b= —0.5) the

tinuous spectrum of z which vary a lot aroung Zherefore ~ dynamical exponeng,~0.734+0.025 found in this paper

their contribution to the asymptotic multiscaling may be everf9'€€S Within the error bars with the experimental value of
yme 9 may ~0.75+0.02[16],

more important than the contributions of trajectories in the %0 o , . .
P )  The variation procedure allows us to find trajectories of

vicinity of the soliton with fixed scaling exponegt klore- the system which are very close to the self-similar solitons
over in some region of parametelis Sabra model ax =2 . . : L
during an interval of time from-o up to some time in the

f(_)r b.> ber~ _(9'5_0'4)1 there are no s_ohtons and the qua- vicinity of the soliton maximum or even after it. These tra-
sisolitons provide dominant contribution to the asympiotiCjetories, called quasisolitons have continuous spectrum of
multiscaling _ _ o _ the dynamical scaling exponents and may provide a domi-
This picture is consistent with the preliminary direct nu- nant contribution to asymptotic multiscaling. The discovered
merical simulation of the Sabra shell mod&V,16 where it features of quasisolitons fdy=—0.8, —0.5, and—0.3 at
was observedi) atb= —0.8 self-similar intense events with \ =2 allows me to rationalize the preliminary numerical ob-
different rescaling exponen{see wide deep minimum of servationg16,17) of asymptotic multiscaling for various val-
Fminm(2) In Fig. 5]; (i) atb=—0.5 self-similar events with ues ofb in the Sabra model.
a very narrow region oz [see not so deep minimum of  « This paper may be considered as a first step toward a
Fminm(2) in Fig. 4]; and(iii ) no solitons ab=—0.3(there is  realistic statistical theory of asymptotic multiscaling in shell
no deep minimum in Fig.)6 models of turbulence which will account for a wide variety

V. CONCLUSION
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of trajectories of the system in the vicinity of quasisolitons. | hope that the analysis of dynamics of intense events in
In particular, one can apply the variation procedure to findthe Sabra model, presented in this paper will help in the
possible complex solitons and quasisolitons with nontriviallyfurther understanding of asymptotic multiscaling along simi-

rotating phases. Such objects may be important in the quar@r lines. These will be also useful for further progress in the
titative description of high-level intermittency when the pa- Problem of anomalous scaling in Navier-Stokes turbulence at
rameterb approaches the critical valuel. Analytical form  least on a qualitative and maybe on semiquantitative level.

of self-similar trajectories of the system found in this paper
may help one to analyze stability of nearby trajectories of the
system. This is useful for describing how the system ap- |tis a pleasure to acknowledge numerous elucidative con-
proaches and later escapes a vicinity of quasisolitons in ordefersations with 1. Procaccia and A. Pomyalov, which contrib-

to describe their role in the statistics of intense but not soli-uted to this paper. This work has been supported by the Israel
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