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Quasisolitons and asymptotic multiscaling in shell models of turbulence

Victor S. L’vov
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 8 May 2001; published 23 January 2002!

A variation principle is suggested to find self-similar solitary solutions~referred to assolitons! of shell model
of turbulence. For the Sabra shell model the shape of the solitons is approximated by rational trial functions
with relative accuracy ofO(1023). It is found how the soliton shape, propagation timetn ~from a shelln to
shells withn→`), and the dynamical exponentz0 ~which governs the time rescaling of the solitons in different
shells! depend on parameters of the model. For a finite interval ofz the author discoveredquasisolitonswhich
approximate with high accuracy corresponding self-similar equations for an interval of times from2` to some
time in the vicinity of the peak maximum or even after it. The conjecture is that the trajectories in the vicinity
of the quasisolitons~with continuous spectra ofz) provide an essential contribution to the multiscaling statis-
tics of high-order correlation functions, referred to in the paper as anasymptotic multiscaling. This contribution
may be even more important than that of the trajectories in the vicinity of the exact soliton with a fixed value
z0. Moreover there are no solitons in some regions of the parameters where quasisolitons provide a dominant
contribution to the asymptotic multiscaling.

DOI: 10.1103/PhysRevE.65.026309 PACS number~s!: 47.27.Gs
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I. INTRODUCTION

The qualitative understanding of many important stati
cal features of developed hydrodynamic turbulence~includ-
ing anomalous scaling! may be formulated within the
Kolmogorov-Richardson cascade picture of the energy tra
fer from large to small scales. For a dynamical modeling
the energy cascade one may use the so-called shell mode
turbulence@1–9# which are simplified versions of the Navie
Stokes equations. In shell models the turbulent velocity fi
u(k,t) with wave-numbersk within a spherical shellkn,k
,kn11 is usually presented by one complex function,
‘‘shell velocity’’ un(t). To preserve scale invariance the sh
wave-numberskn are chosen as a geometric progression

kn5k0ln, ~1!

wherel is the ‘‘shell spacing’’ and 1<n<N. The equation
of motion readsdun(t)/dt5Qn , where Qn is a quadratic
form of um(t) which describes interaction of neighborin
shells. Clearly, shell models can be effectively studied
numerical simulations in which the values of the scaling
ponents can be determined very precisely. Moreover, un
the Navier-Stokes equations, the shell models have tun
parameters~like l) affecting dynamical features of the en
ergy transfer. This allows one to emphasize one after ano
different aspects of the cascade physics and to study t
almost separately.

The statistics ofun may be described by the moments
the velocitySp(kn) which are powers ofkn

Sp~kn![^uunup&}kp
2zp}l2nzp, ~2!

in the ‘‘inertial range’’ of scales,nL,n,nd . HerenL is the
largest shell index affected by the energy pumping andnd is
the smallest shell index affected by the energy dissipatio

In the paper, we employ the so-called Sabra shell mo
@9# which is a modification of the popular Gledzer-Okhitan
1063-651X/2002/65~2!/026309~11!/$20.00 65 0263
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Yamada~GOY! model @1,2#. Similar to the Navier-Stokes
turbulence the scaling exponentszp in the Sabra model ex
hibit nonlinear dependence onp. Similar anomalies were
previously found in the GOY model@1,2#. However the Sa-
bra model has simpler correlation properties, for examp
second-order correlation functions ofun are diagonal in the
shell indexes~which is not the case in the GOY model!. As a
result the Sabra model exhibits cleaner scaling behavio
the inertial range~without spurious for the Navier-Stoke
turbulence ‘‘period-three oscillations’’!. The equations of
motion for the Sabra model read

dun

dt
5 i ~akn11un12un11* 1bknun11un21* 2ckn21un21un22!

2nkn
2un1 f n , ~3!

a1b1c50. ~4!

Here the star stands for complex conjugation,f n is a forcing
term which is restricted to the first shells, andn is the ‘‘vis-
cosity.’’ Equation~4! guarantees the conservation of the ‘‘e
ergy’’ E and ‘‘helicity’’ H

E5(
n

uunu2, H5(
n

~a/c!nuunu2, ~5!

in the inviscid (n50) limit.
In this paper we will consider self-similar solutions of th

Sabra shell models~3! in a form of solitary peaks—solitons.
The important role of intense self-similar solitons in the s
tistics of high-order structure function was discussed in Re
@10–12#. The two-fluid picture of turbulent statistics in she
models and corresponding ‘‘semiqualitative’’ theory in th
spirit of Lipatov’s semiclassical approach@13# was suggested
in Refs.@14,15#: self-similar solitons form in and propagat
into a random background of small intensity generated b
forcing which has Gaussian statistics andd correlated in
©2002 The American Physical Society09-1
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time. Accounting in the Gaussian approximation for sm
fluctuations around self-similar solitons the authors
@14,15# reached miltiscaling statistics with a narrow spe
trum of z. In the present paper the multiscaling statistics
high-order correlation functions will be referred to
asymptotic multiscaling.

Preliminary direct numerical simulations of the Sab
shell model@16–18# shows the asymptotic multi-scaling is
consequence of much reacher dynamics of shell models.
example in theb interval @21,b,20.7# and atl52 ex-
tremely intense self-similar peaks on a background of sm
fluctuations was indeed observed. Each particular peak
well-defined time-rescaling exponentz0, however from peak
to peak the valuez0 essentially varies@17#. In the region
@20.3,b,0# the level of intermittency is much smalle
intense solitary events vanish, however turbulent statis
remain anomalous@17,18#. Only at the intermediate value o
b'20.5 @16# intense self-similar peaks with a narrow spe
trum of dynamical exponentz050.7560.02 was found@16#.

These observations may serve as a starting point in de
oping a realistic statistical theory of asymptotic multiscali
which will take into account a wide variety of relevant d
namical trajectories of the system not only in the vicinity
the well-defined solitons. The present paper is a first ste
this direction and is organized as follows.

The analytic formulation of the problem is presented
Sec. II. For the general reader, I describe a self-similar fo
of solitary soliton ‘‘propagating’’ through the shells~Sec.
II B !. I derive the ‘‘basic self-similar equations’’ for the sol
tons ~Sec. II C!, consider the relevant boundary conditio
~Sec. II D! and analyze the asymptotic form of soliton ta
for infinite times~Sec. II E!.

Section III is devoted to a variation procedure for t
problem. I suggest in Sec. III A a simple positive defin
functionalF(z)>0 such that the exact solution correspon
to F(z0)50. The analytic form of trial functions is discusse
in Sec. III B. In Sec. III C, we will see in detail how th
variation procedure works in the case of the ‘‘canonical’’ s
of parametersl52, b520.5. The characteristic value o
F(z), F0, is of the order of unity. The minimization ofF(z)
~with respect to the propagation time and soliton width, w
proper choice of trial function without fit parameters and
experimentally found valuez050.75 @16#! givesFmin(0.75)
'0.08. Step-by-step improvement of the approximation
reached by a consecutive addition of fit parameters wh
affect a shape of the soliton. With ten shape parameters
value of Fmin(z) may be as small as 1023. The resulting
‘‘best’’ values of the shape parameters give approximate
lutions of the basic equation~normalized to unity in their
maximum! with local accuracy of the order of 1023.

Section IV presents results of the minimization on tr
rational functions~ratios of two polynomials! with ten shape
parameters, and their discussion. First, in Sec. IV A,
compare and discuss thez dependence ofFmin(z) for b5
20.8, 20.5, and20.3 ~at l52). An important observation
~Sec. IV B!: there are intervals ofz for which basic equations
do not have self-similar solitary solutions for all times~soli-
tons! but may be solved approximately for intervals of tim
from 2` up to some moment in the vicinity of soliton max
02630
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mum or even after it. Configurations of the velocity field
the vicinity of these solutions may be calledquasisolitons.
My conjecture is that the quasisolitons with continuous sp
tra of z may provide an even more important contribution
the asymptotic multiscaling than the contributions from t
trajectories in the vicinity of an exact soliton with fixed sca
ing exponentz0. The concept of quasisolitons and propos
in this paper the dependence of their properties onb allows
us to reach a qualitative understanding of the behavior
intense events for various values ofb, observed in direct
numerical simulation of the Sabra model@16–18#.

In conclusion, Sec. V I summarize the results of the pa
and presents my understanding of a way ahead towa
realistic theory of asymptotic multiscaling for shell mode
of turbulence which also may help in the further progress
the description of anomalous scaling in the Navier-Sto
turbulence.

II. BASIC SELF-SIMILAR EQUATIONS OF THE SABRA
SHELL MODEL

A. ‘‘Physical’’ range of parameters

In the inertial interval of scales the Sabra equation
motion ~3! has formally five parameters:k0 , l, a, b, andc.
They enter in the equation in four combinations:l, (k0a),
(k0b) and (k0c), therefore by the rescaling of the paramete
a,b, andc we getk051. Without loss of generality we may
considera.0. A model with negativea turns into a model
with positive (k0a) by replacingun→2un . By rescaling of
the time scalet→(at) we get a model witha51. The pa-
rametersa, b, and c are related by Eq.~4!. Thus we can
expressc52(a1b)→2(11b). With this choice only two
parameters of the Sabra model remain independent,b andl,
by construction of the modell.1. A typical choicel52
will be considered in this paper.

Note that for (a/c).0 ~which is c.0 or b,21 at a
51) the model has two positive definite integrals of moti
which are quadratic inun : the energy and ‘‘helicity’’~5!. In
this case~as it was discussed in Refs.@6–8#! one may di-
rectly apply the Kraichnan argument for the enstropy and
ergy integrals of motion in two-dimensional~2D! turbulence
and conclude that in shell models fluxes of energy and ‘‘
licity’’ will be oppositely directed: ‘‘direct’’ flux ~from small
to large shell numbersn! will have an integral of motion for
which largen shells will dominate. Therefore for (a/c).1
~which is 22,b,21 at a51) one expects direct flux o
‘‘helicity’’ and inverse flux of energy, like in 2D turbulence
This reasoning predicts direct flux of energy for (a/c),1 ~or
b,22 at a51). In both cases one cannot expect a stati
cally stationary turbulence with flux equilibrium because o
of the ~positive-definite! integrals of motion will accumulate
on first shells without a mechanism of dissipations. The
fore one expects an energy-flux equilibrium with direct fl
of energy like in 3D turbulence only for negative ratioa/c
~or b.21 ata51) when the ‘‘helicity’’ integral is not posi-
tive definite and Kraichnan’s arguments are not applicab

More careful analysis shows that only the region21,b
,0 ~at a51) may pretend to mimic 3D turbulence. Forb
9-2
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.0 when (2c).a51 the existence of the ‘‘helicity’’ inte-
gral ~even not positive definite! leads to period-two oscilla
tions of the correlation functions which are increasing withn
and are ‘‘unphysical’’ from the viewpoint of 3D turbulence
One can see this from the exact solution for the third-or
correlation function

S3~kn![Im^un21unun11* &, ~6!

which in the inertial interval of scales reads@9#

S3~kn!5
1

2kn~a2c! F2 ē1 d̄S c

aD nG . ~7!

Here ē and d̄ are fluxes of energy and ‘‘helicity,’’ respec
tively. For any small ratiod̄/ ē and (c/a),21 the correlator
S3(kn) ~and presumably many others! will have period-two
oscillations which increase withn . Therefore in this pape
we will consider only the region

21,b,0,

traditionally keepingl52.

B. Self-similar form of ‘‘propagating’’ solitons

Self-similar form of ‘‘propagating’’ solitons is based o
very general features of shell models of turbulence~the qua-
dratic form of nonlinearity with the amplitudes of interactio
proportional toln) and therefore is not specific for the pa
ticular shell models. For the Obukhov-Novikov and GO
models the substitution was found in Refs.@12,14#. In this
section we briefly review the physical considerations lead
to the self-similar substitution in the Sabra shell model
turbulence and introduce corresponding notions.

Self similarity in our context means that solitons prop
gate through shellswithout changing their form. ‘‘Propaga-
tion’’ means that the timetn at which peak reaches its max
mum increases withn, in other words, the largern, the later
peak reaches this shell. Intuitively this picture correspond
the energy transfer from shells with smalln to large ones.

Self-similar propagation of the solitons may be forma
described by the same functionf (tn) of dimensionless time
tn which is counted from the time of the soliton maximumtn
and normalized by some characteristic time fornth shellTn

tn5~ t2tn!/Tn . ~8!

The timeTn has to be rescaled withn as follows:

Tn5Tl2zn, T51/~k0v !, ~9!

wherez is adynamical exponentand the characteristic timeT
is organized from the characteristic velocity of the solitonv
and the wave vector of the problemk0. The time delaystn
2tn21 also have to rescale likeTn

tn21,n[tn2tn215 t̃Tl2zn, ~10!

where thepositive dimensionless timet̃ is of the order of
unity.
02630
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Consider next the amplitudes of the solitons. Denote
un,max the maximum of the velocity in thenth shell which
also rescales with another exponenty

un,max5vl2yn. ~11!

In order to relate the exponentsz andy we sketch the basic
Eqs.~3! having in mind only dimensions andln dependence

~dun /dt!}k0lnun
2 .

Consequently,Tn
21;k0lnun,max and therefore

y1z51. ~12!

Finally we may write a self-similar substitution in the form

un~ t !52 ivl2ynf @~ t2tn!vk0lzn#. ~13!

With this choice of a prefactor (2 i ), the real and positive
function f will give a positive contribution to the energy flu
~6! in the inertial interval of scales

ē52kn~a2c!Im^un21* un* un11&. ~14!

C. Self-similar equation of motion

We introduce a dimensionless time for thenth shell as
follows:

tn[~ t2tn!vk0lzn. ~15!

The right-hand side~RHS! of the equation ford f(tn)/dtn
will involve a function f with argumentstn61 andtn62. All
these times may be uniformally expressed in terms of a
mensionless time

t0[t̃/~lz21! ~16!

as

tn6s5l6sz~tn2t0!1t0 , s51,2. ~17!

The characteristic timet0 is related to the timetn,` which is
needed for a pulse to propagate from thenth shell all the way
to infinitely high shells

tn,`[ (
m5n

`

tm,m115t0l2nzT. ~18!

Substituting Eq.~13! into Eq.~3! and using relationship~17!
one gets the ‘‘basic equation’’ of our problem

D~t![
d f~t!

dt
2C~t!. ~19!

Here we replacedtn→t and introduced a ‘‘collision’’ term
C(t) according to
9-3
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VICTOR S. L’VOV PHYSICAL REVIEW E 65 026309
C~t![2al3z22f * @lz~t2t0!1t0# f @l2z~t2t0!1t0#

2cl223zf @l2z~t2t0!1t0# f @l22z~t2t0!1t0#

1~a1c! f * @l2z~t2t0!1t0# f @lz~t2t0!1t0#.

~20!

D. Boundary conditions of the basics Eq.„19…

The boundary conditions att56` for a soliton are ob-
vious

f ~6`!50. ~21!

By construction the soliton reaches a maximum att50.
Therefore

d f~t!

dt U
t50

50. ~22!

Introduce a characteristic width of a soliton 1/d according to

d2f ~t!

dt2 U
t50

52d2. ~23!

It is convenient to introduce a time variables and a function
g(s) with the unit width

f ~t![g~s!, s[td, ~24!

d2g~s!

ds2 U
s50

521. ~25!

With this time variable, the equation of motion~19! reads

D~s,z,s0 ,d!5q~s!2C~s,z,s0!50, ~26!

where

q~s![d
dg~s!

ds
, s0[td, ~27!

C~s,z,s0![~a1c!g* S s2s0

lz
1s0D g@lz~s2s0!1s0#

2al3z22g* @lz~s2s0!1s0#g@l2z~s2s0!1s0#

2cl223zgS s2s0

lz
1s0D gS s2s0

l2z
1s0D . ~28!

Functiong(s) should vanish at infinite times

lim
s→2`

g~s!50, ~29!

lim
s→`

g~s!50. ~30!

The boundary conditions ats50 read
02630
g~0!51,
dg~s!

ds U
s50

50,
d2g~s!

ds2 U
s50

521. ~31!

Note that the problem to find a form of the self-similar so
tons may be divided into two independent problems:
times smaller and larger thans0. Indeed, Eq.~26! for times
s,s0 does not contain functions for timess.s0 and vice
versa. At the boundary between these regions Eq.~26! re-
duces to

d

ds0
F 1

g~s0!G5dp0 ,

p05a~l3z2221!2c~12l223z!. ~32!

In our discussiona.0, c,0, l.1, andz.2/3. Therefore
p0.0 anddg(s0)/ds0,0. It means that the times0 is larger
than the times50 at whichg(s) has a maximum, i.e.,s0
.0. As we noted@and see Eq.~18!#, s0 is the time which is
needed for a pulse to propagate from thenth shell to an
infinity high shell. Therefore the relations0.0 agrees with
our understanding of the direct cascade.

So, we will divide the time interval@2`,s,`# into
two subintervals:@2`,s<s0# and @s0,s,`#. For @2`
,s<s0# the maxima of the solitons in all shells are in th
inertial interval of scales and very high shells are not
activated. We will refer to this interval as aninertial interval
of times. In the second time interval, fors.s0 high-shell
solitons already reached the dissipative interval of scales.
will refer to this interval as adissipative interval of times.
Generally speaking, in this interval one has to account for
viscous term in the equation of motion. In this paper we w
restrict ourselves to the inertial interval of times.

It was shown in Ref.@12# that equations similar to Eq
~19! with similar boundary conditions can be considered
nonlinear eigenvalue problems. They have trivial solutio
f (s)50, but they may have nonzero solutions for partic
larly the values ofz5z0 and s0. Below we will find non-
trivial solutions of our Eq.~26! that satisfies conditions~29!
and ~31! and for whichz0 lies in the physical region23 ,z
,1.

E. Qualitative analysis of self-similar solutions ats\Á`

In this section we will analyze time-dependent solutio
of Eq. ~3! which are more general than a Kolmogorov-4
~K41! and have a form of solitary pulses—solitons. We w
show that the solitons have long~powerlike! tails g(s)
}sx6 at s→6`. One way to find the asymptotic solution o
Eq. ~26! is to balance the exponents in its left-hand si
~LHS! and RHS. Forg(s)}s2x this gives immediatelyx
51. Thus,g(s)5D1 /s. Equating prefactors in the LHS an
RHS of the Eq.~19! we get

D15
2l2d

~a2cl2!~l221!
. ~33!
9-4
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The coefficientD1 appeared to be real and, in the actu
range of the parameters (l.1a.0,c,0), negative. For the
positive functiong(s) this asymptotic form describes th
front part of the pulse~at negatives). So

g~s!5
2l2d

s~a2cl2!~l221!
, s→2`. ~34!

Another approach is to assume that in the equation@g(s)
}s2x# the exponentx,1. Then, the LHS will behave a
1/s11x while the RHS will be proportional to 1/s2x. In the
limit s→` and atx,1 one may neglect the LHS of the Eq
~26!. Then the exponentx cannot be found by power coun
ing. Instead one requires that the prefactor in the RHS@i.e.,
in theC(s) term# must vanish. This gives the following equa
tion for x:

05al3z(12x)221cl223z(12x)2~a1c!. ~35!

Denoting

L[l3z(12x)22, ~36!

we have, instead of Eq.~35!, the square equation forL

aL22~a1c!L1c50,

with the roots

L151, L25c/a.

In the chosen region of parameters (c and a have different
signs! L2,0, which contradicts the assumption of realx.
Therefore the only rootL151 is relevant. According to defi
nition ~36! this gives

x15g[12
2

3z
. ~37!

Here we used notationg for the exponent of the long pos
tive tail of the pulse introduced in@12# for the Novikopv-
Obukhov shell model. As we see, the relation~37! is model
independent. Actually this equation is a consequence of
conservation of energy~reflected in the constrainta1b1c
50) and the fact that the shell models account only
interaction of three consequent shells. Clearly, the relev
region ofg is 0,g,1. This corresponds to

2

3
,z,1. ~38!

We conclude that fors→1`

g~s!5Dg /sg, ~39!

with a free factorDg which has to be determined by matc
ing the asymptotics~39! with a solution in the regions;s0.
It is known @11# that the self-similar core of the functio
g(s) gives rise to a linearn dependence of the scaling exp
nentzn of the nth-order structure function at largen
02630
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zn5z1~12z!n, at n.ncr51/g. ~40!

For z5 2
3 Eq. ~39! gives the K41 slope1

3 which is the
largest possible one. Valuez51 corresponds to the larges
possible intermittency~zero slope!. Therefore we may con-
sider Eq. ~38! as the ‘‘physical region’’ of the dynamica
exponentz.

III. VARIATION PROCEDURE FOR SOLITONS
AND QUASISOLITONS

A. Suggested functionals

Consider the following functional acting on the functio
g(s):

F$g~s!uz,s0 ,d%[AE
2`

s0
ds@D~s,z,s0 ,d!#2, ~41!

which also depends on the parameters of the probleml, b, z,
s0, andd. By construction, the functionalF$g(s)uz,s0 ,d% is
non-negative and equal zero ifg(s) is a solution of the prob-
lem ~26!: D50. Clearly, the functional~41! is not unique.
For example, we may use a more general, ‘‘weighted’’ fun
tional,

F̃$g~s!uz,s0 ,d%[AE
2`

s0
dsW~s!@D~s,z,s0 ,d!#2,

~42!

with some positive ‘‘weight’’ functionW(s).0. This func-
tional is also positive definite and also equals zero ifg(s) is
a solution of the problem~26!.

One can easily find many other functionals giving a
proximate solutions of the problem. The function
F$g(s)uz,s0 ,d% has an advantage of simplicity. Its minim
zation ~with a proper choice of the trial function! leads to a
solution of the problem with high accuracy. For examp
with trial functions discussed in Sec. III B the relative acc
racy ~with respect to the value of a soliton maximum! is
O(1023). Therefore we will restrict the present discussion
the simple functionalF$g(s)uz,s0 ,d%.

B. Suggested form of trial functions

For simplicity, in this paper we will seek only real~with-
out nontrivial phases! solitons. Complex solitons will be dis
cussed~within the same scheme! elsewhere.

My suggestion is to use different trial functions for neg
tive and positive times, both satisfying boundary conditio
~31! at s50. Denote asgm1(s) the trial functions for posi-
tive times withm shape parameters. Let the functiongm1(s)
satisfy condition~32! at s5s0. This condition is a constrain
on the time derivative of 1/gm1(s). Having also in mind that
gm1(s) is defined on the interval@0,s,s0# with s0;1 it is
convenient to choose 1/gm1(s) as a polynomial ins. The
first ~free! term of expansion is one becausegm1(0)51. The
second term (}s) vanishes due todg(s)/ds50 ats50. The
next term must bes2/2 due to the restriction on the secon
derivative~31! at s50. In order to satisfy condition~32! at
9-5
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VICTOR S. L’VOV PHYSICAL REVIEW E 65 026309
s5s0 we have to account at least for a cubic term. Theref
the simplest function of this type,g01(s) without fit param-
eters takes the form

g01~s![F11
s2

2
1

s3

3s0
2 S p0

d
2s0D G21

. ~43!

If needed we can add fit parametersp1 , p2, etc., accounting
for terms}s4, }s5, etc. Accordingly, a trial function withm
shape parameters takes the form

gm1~s!5F11
s2

2
1

s3

3s0
2 S p0

d
2s02(

j 51

m

pj D
1(

j 51

m
pjs

j 13

~ j 13!s0
j 12G21

.

In most cases it would be enough to useg51(s) with five
shape parameters.

Denote asgm2(s) the trial functions for negative time
havingm shape parameters. These functions have to appr
mate the basic equation on the infinite time interval fro
2` to 0. Therefore their analytic form is a much more de
cate issue. Analyzing the form of the peaks observed in
rect numerical simulations@17#, I have found a function
g̃12(s) with one fit parameterq

g̃12~s![
12sAq/~q21!

@12s/Aq~q21!#q
, ~44!

which allows us to reach accuracy of solution of Eq.~26! of
O(1022). This accuracy would be enough for future com
parison of the ‘‘theoretical’’ shape of a pulse with that fou
in direct numerical simulation of the Sabra model. Howev
this function does not have the correct asymptotic beha
~34! for s→2` and is inconvenient for successive improv
ments of the approximation.

Instead ofg̃12(s) for negative time I use in the regula
minimization procedure a ratio of two polynomials ofnth
andn11 orders. This ratio has 2n12 free parameters. Afte
accounting for three conditions~31!, just (2n21) param-
eters remain free. Simple function of this type withn51,
which also agrees with asymptotic~34!, has no free param
eters

g̃02~s!5
21D1s

21D1s1s2
. ~45!

We will discuss even more simple rational function

g02~s!5@11 1
2 s2#21. ~46!

Actually a better approximation may be achieved by a fu
tion similar to Eq.~45! with one free parameterq1

g12~s!5
11q1s

11q1s1 1
2 s2

. ~47!
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In actual calculations it would be sufficient for our purpos
to account for five shape parameters in the function

g52~s!5
11q1s1q2s21q4s3

11q1s1~q21 1
2 !s21q3s31q5s4

. ~48!

The function g52(s) reduces tog32(s) by choosingq4
5q550 and tog12(s) at q25q35q45q550.

C. Test of the variation procedure

In this section we will see in detail how the variatio
procedure suggested above works for the ‘‘canonical’’ se
parametersl52, b520.5. Denote asFmin,m(z) the result
of a minimization of the functionalF$g(s)uz,s0 ,d% acting on
the functionsgm6(s) at givenz ~with 2m12 shape param-
eters!. The parameters in the minimizations are: the propa
tion time s0, width parameterd, m shape parameters fo
negative times (q1 , . . . ,qm), and m shape parameters fo
positive times (p1 ,•••,pm)

Fmin,m~z![ min
qj ,pj us0 ,d

F$g~s!uz,s0 ,d%. ~49!

Table I displays the found values ofFmin,m(z) for z
50.75,0.85, 0.95 andm50, 1, 3, 5.

Consider first the casez50.75, which corresponds to th
dynamical exponent of intense self-similar peaks observe
our direct numerical simulation of the Sabra shell mod
@16#. At m55 we have reachedFmin,5(0.75)'2.331024.
This value is more than 200 times smaller than the cha
teristic value of the functional before minimization,F0
'0.5. This allows us to hope that the minimization using t
functions g56(s) with total number 2m510 of the shape
parameters will be sufficient for most applications.

Note that for some purposes we may use less than
shape parameters. For example ‘‘optimal’’ values ofs0 andd
shown in Table I begin to converge form>3. Therefore for
a reasonably good estimate ofs0 andd we may use the trial
functionsg36(s) having six shape parameters. Moreover, t
same level of accuracy as withm53 may be achieved jus
with two shape parameters (q,p1) if we replaceg32(s) by
g̃12(s) and, ~which is less important! g31(s)→g11(s).
Minimization with g̃12(s) andg11(s) gives

TABLE I. Optimal values of (s0 ,d) for z50.75 and values of
Fmin,m for z50.75, 0.85, and 0.95. Number of the shape parame
is 2(m11), m50, 1, 3, and 5.

m50 m51 m53 m55

z50.75 s0 0.36 0.36 0.55 0.517
z50.75 d 1.19 1.18 1.59 1.49
z50.75 Fmin,m 0.0811 0.0675 0.0176 0.00234
z50.85 Fmin,m 0.2047 0.1014 0.0284 0.0092
z50.95 Fmin,m 0.3471 0.1377 0.0780 0.0650
9-6
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min
s0 ,d,q,p1

F$g~s!uz,s0 ,d%'0.0197, atz50.75,

s0'0.54, d'1.57, q'8.59, p1'20.44. ~50!

Another example in which we may use less then ten sh
parameters for a reasonably good description is the shap
solitons,g(s). Figure 1 displays functionsg(s) and q(s),
Eq. ~27! for m53 ~dashed lines! and form55 ~solid lines!.
We see that for comparison with experiments we can us
simpler form withm53. In Fig. 1 are also plotted by dashe
lines functionsg(s) and q(s) resulting from minimization
~50! with two shape parameters. They are indistinguisha
from the corresponding functions having six shape para
eters.

Note that the minimal values of the functionalFmin,m(z)
characterize the ‘‘global’’ accuracy of the approximation
the whole interval ofs, @`,s0#. It would be elucidative to
discuss a ‘‘local deviation’’ which may be described by t
function D(s,z,s0 ,d)[q(s)2C(s,z,s0).

According to Eq.~26!, the local deviationD(s,z,s0 ,d)
has to vanish for alls. Denote asDmin,m(s,z) the deviation
D(s,z,s0 ,d) at optimal values ofs0 ,d, and 2m shape param-
eters. The deviationDmin,5(s,0.75) is shown in Fig. 2. Ex-
cluding the small region usu,0.1 the deviation
Dmin,5(s,0.75),1023, i.e., is more than 500 times smalle
than the maximal value ofq(s) shown in Fig. 1. This serve
for us as a strong support of the conjecture that by add
more and more fit parameters one can reach smaller
smaller values ofFmin , i.e., limm→` Fmin,m50 and for z
50.75 one can find a true solution of the problem. The c
rently available personal computers allow us to find solutio
with Fmin,10;1023 andD,231023 during one–two hours
of calculations using the standard package of Wolfram
MATHEMATICA .

Consider now a different value ofz50.95. As follows
from the Table I, there are no jumps in improving the a
proximation for m>2. For z50.95 the ratio
Fmin,1(z)/Fmin,5(z).2 while for z50.75 the same ratio
Fmin,1(z)/Fmin,5(z).28. It is very reasonable to expect th

FIG. 1. Trial functionsg(s) and q(s)[d@dg(s)/ds# for l
52, b520.5, andz50.75. Solid lines correspond to the full min
mization (m55), dashed – tom53. The same dashed lines sho
results of the minimization~50! with only two shape parameters.
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Fmin,m(0.95) cannot be much smaller that 0.06 even for v
largem. One may conclude that forz50.95 there is no ‘‘glo-
bal’’ solution in the interval@2`,s,s0#.

Nevertheless, the local deviationDmin,5(s,0.95) shown in
Fig. 3 is quite small, say in the regions,0. Moreover, in the
region s,s* '22 the characteristic value of the deviatio
Dmin,5(s,0.95) is more or less the same as forz50.75 where
we have an approximate solution~soliton! in the whole re-
gion s,s0. Consequences of this fact will be discussed la

IV. SOLITONS, QUASISOLITONS, AND ASYMPTOTIC
MULTISCALING

A. z valleys of the functionalFmin,5„z…

In this section we discuss thez dependence of the func
tional Fmin,5(z) and of the optimal values ofs0 andd. These
functions for b520.5, 20.8, and20.3 are displayed in
Figs. 4, 5, and 6, respectively.

For b520.5 ~Fig. 4! the z dependence of the functiona
has a minimumFmin,5(z)'231023 aroundz'0.734. This
minimum is quite flat. For example,Fmin,5(z),F* [2.5
31023 for z within the interval @zmin50.71,zmax50.76#.
Note that forb520.8, ~Fig. 5! the same~arbitrary! level F*
exceedsFmin,5(z) for z in the wider interval@0.71,0.84#. In
the same time forb520.3 ~Fig. 6! there are no values ofz
for which Fmin,5(z),F* . A natural interpretation of these
facts is that atb520.8 one can meet in the velocity realiza

FIG. 2. Local deviationDmin,5(s,0.75), Eq.~26! vs s for l52,
b520.5. Upper panel: region210,s,s0. Lower panel: blow up
of the region2s0,s,s0.
9-7



s
l

i
e

th

o

s
b
f

by

otic

i-
of

el
:

-

s

via-

ne

r

VICTOR S. L’VOV PHYSICAL REVIEW E 65 026309
tion ~of the Sabra model! un(t) intense solitons with value
of z in a quite wide interval~for example, in the interva
@0.71, 0.84# mentioned above!, at b520.5 the ‘‘allowed’’
interval of z is more narrow~say, @0.71, 0.76#! and for b5
20.3 one can hardly meet intense solitons at all. As we w
discuss below, this statement is in a quantitative agreem
with the preliminary results of the numerics@17#.

Clearly, we are not talking about particular values ofzmin

andzmax, for example because the boundary levelF* 52.5
31023 was chosen arbitrarily. Moreover, the objectszmin ,
zmax do not have explicit sense. The actual conjecture is
the functionalFmin,m(l,b,z) is correlated with aprobability
to meet a soliton or quasisoliton with given dynamical exp
nent z in the realization~for given l and b): the smaller
value ofFmin,m(z) ~at large enoughm), the larger this prob-
ability. From this point of view the two following scenario
are statistically almost equivalent: The first one may
called amultisoliton scenario: there is a discrete spectrum o
solitons with some close set of exponentsz0,1, z0,2 in the
interval@zmin , zmax]. One can imagine that this is the case
looking at Fig. 5~upper panel! where the functionFmin,5(2,
20.8,z) has two minima atz0,1'0.77 andz0,2'0.81. The
second one will be referred to as aquasisoliton sceneriowith
continuousz spectrum of quasisolitons in some~wide! inter-
val of z.

FIG. 3. Local deviationDmin,5(s,0.95) vss for l52, b520.5,
andz50.95 with optimal set of ten shape parameters. Upper pa
region 210,s,s0. Lower panel: blow up of the region2s0,s
,s0.
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B. Local deviations and quasisolitons

The analysis of the local deviationsDmin,m(s,z) presented
in this section supports a quasisoliton scenario of asympt
multiscaling. Let us choseb520.8 for which we found in
Fig. 5, ~upper panel! the wide deepz valley of the functional
Fmin,5(z). Compare thes dependence ofDmin,m(s,z) for the
value ofz50.81, which corresponds to the right local min
mum of the functional and for two slightly larger values
z50.84 and 0.88. The local deviationsDmin,m(s,z) are plot-
ted in Fig. 7 forz50.81 by solid lines, forz50.84 by dashed
lines, and forz50.88 by dash-dotted lines. The upper pan
showss interval of a left tail the soliton up to its maximum
@210,s,0#. The lower panel showss interval around soli-
ton maximum:@21,s,s0#.

It was mentioned that the valuez0,250.81 corresponds to
the right local minimum of the functional. The local devia
tion uDmin,5(s,0.81)u is about 231023 in the s region
@21,s0#, see solid line in Fig. 7, lower panel!. For s,22
~the upper panel! the local deviation is almost ten time
smaller, about 2.531024. The valuez50.84 does not corre-
spond to z minima of the functional: Fmin,5(0.84)
'2Fmin,5(0.81). The larger value ofFmin,5(0.84) is mostly
determined by the region of positives whereuDmin,5(s,0.84)u
exceeds 0.01, which is essentially larger than the local de

l: FIG. 4. The z dependence of 103Fmin,5, 102Fm in,10 ~upper
panel!, ands0 , d ~lower panel!, for l52, b520.5. Vertical dashed
lines shows K41 value ofz52/3. Horizontal dashed line in uppe
panel corresponds to chosen value 103F* 52.5. Points for 103Fmin,5

with 0.72,z,0.76 are below this level.
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tions in this region atz50.81, @compare dashed (z50.84)
and solid (z50.81) lines in the lower panel of Fig. 7#. Un-
expectedly, in the regions,21 ~the upper panel! the local
deviation at z50.84 is even smaller than that atz5z0,2
50.81. In other words, in thiss region the reached approx
mation is better for valuez50.84 than that forz50.81.
Dash-dotted lines in Fig. 7 show that the local deviation
a z50.88 is essentially larger than forz50.84 and 0.81.

Let us show that these qualitative results are indepen
of the particular form of the functional~41! which we chose.
For that consider the weighed functional~42! with the weight
fuction

W~s!5@~s2s0!211#y, ~51!

which is of the order of unity in the vicinity of the solito
maximum and increases toward the front tail asusu2y. At y
50 one recovers the uniform weightW(s)51. For positive
y the weight function emphasizes the left tail, i.e., the reg
s!1. The value ofy has to be smaller than12 , otherwise the
s integral in Eq.~42! diverges. It is reasonable to choose
intermediate value ofy51/4 and to repeat the minimizatio
procedure. The resulting changes in the values ofs0 , d, and
shape parameters were minor. For example~for l52, b5
20.8, z50.84) s050.7506→0.7478, d51.2645→1.2618.

FIG. 5. Thez dependence of 103Fmin,5, 102Fmin,5 ~upper panel!,
and s0 , d ~lower panel! for l52, b520.8. Vertical dashed line
shows K41 value ofz52/3. Horizontal dashed line in upper pan
corresponds to chosen value 103F* 52.5. Points for 103F min,5 with
0.71,z,0.84 are below this level.
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Figure 8 compares the local deviationD for unweighed
~solid lines! and weighed~dashed lines! functionals. Again,
the difference between these two approaches is minor.

A natural interpretation of all these facts is as follows: f
some discrete values ofz5z0,j ~say for z0,1'0.734 atb5
20.5 andz0,1'0.78, z0,2'0.81 atb520.8) the variation
procedure allows us to find better and better approxima
to the solution in the global sense:Fmin,m(z0,j )→0 in the
limit m→`. Clearly in these cases solutiong(s) exists also
locally: the maximum of the local deviationDmin,m(s,z0,j )
also goes to zero in this limit. In means that there are s
similar solitons in the shell model with scaling exponen
z0,j . For other values ofz there is no global solution. It
means that form→` the limit of Fmin,m is finite, but may be
small enough. Nevertheless for a wide region ofs,s* ~in
the examplez50.75, b520.5 the value ofs* '22) the
local deviationDmin,m(s,z) is very small and Eq.~26! may
be ‘‘almost solved.’’ We may say that the variation procedu
finds ‘‘quasisolutions,’’ which approximate the equations
motion with very good accuracy starting from the ‘‘time o
appearance of a soliton (s→2`) until some times* . The
value of s* may be close to the time of the soliton max
mum. Remember, that in the real shell system intense ev
form in a random background of small fluctuations whe
one may meet configurations corresponding to initial con

FIG. 6. The z dependence of 103Fmin,5, 102Fm in,10 ~upper
panel!, and s0 , d ~lower panel! for l52, b520.3. The vertical
dashed line shows K41 value ofz52/3. Horizontal dashed line in
upper panel corresponds to chosen value 103F* 52.5. All points for
103F min,5 exceed this level.
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tions of these ‘‘quasisolutions.’’ In that case the system
gins to evolve along the quasisolutions up to some ti
about s,s* where the quasisolution stops to approxima
well the self-similar equation of motion. These pieces of t
jectory are referred to asquasisolitons. After the time s*
trajectory has to deviate from the quasisolitons, presuma
exponentially fast. Quasisolitons look like the front part
solitons and may include their maxima.

The main message is thatthe quasisolitons have a con
tinuous spectrum of z which vary a lot around z0. Therefore
their contribution to the asymptotic multiscaling may be ev
more important than the contributions of trajectories in t
vicinity of the soliton with fixed scaling exponent z0. More-
over in some region of parameters@in Sabra model atl52
for b.bcr'2(0.520.4)# there are no solitons and the qua
sisolitons provide dominant contribution to the asympto
multiscaling.

This picture is consistent with the preliminary direct n
merical simulation of the Sabra shell model@17,16# where it
was observed:~i! at b520.8 self-similar intense events wit
different rescaling exponents@see wide deep minimum o
Fmin,m(z) in Fig. 5#; ~ii ! at b520.5 self-similar events with
a very narrow region ofz @see not so deep minimum o
Fmin,m(z) in Fig. 4#; and~iii ! no solitons atb520.3 ~there is
no deep minimum in Fig. 6!.

FIG. 7. Local deviationD, Eq. ~26! vs s for l52 and b5
20.8. Upper panel: region210,s,0. Lower panel: region21
,s,s0. Solid lines: z50.81, dashed lines:z50.84, dash-dotted
lines: z50.88.
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V. CONCLUSION

• I have suggested a variation procedure~basic functional
and trial functions! for an approximate solution of equation
for the self-similar solitary peaks~solitons! in shell models
of turbulence. The rational functions with ten shape para
eters approximate solitons in the Sabra shell model with r
tive accuracy 0(1023).

• For the standard set of parameters (l52, b520.5) the
dynamical exponentz0'0.73460.025 found in this paper
agrees within the error bars with the experimental value
z0'0.7560.02 @16#.

• The variation procedure allows us to find trajectories
the system which are very close to the self-similar solito
during an interval of time from2` up to some time in the
vicinity of the soliton maximum or even after it. These tr
jectories, called quasisolitons have continuous spectrum
the dynamical scaling exponents and may provide a do
nant contribution to asymptotic multiscaling. The discover
features of quasisolitons forb520.8, 20.5, and20.3 at
l52 allows me to rationalize the preliminary numerical o
servations@16,17# of asymptotic multiscaling for various val
ues ofb in the Sabra model.

• This paper may be considered as a first step towar
realistic statistical theory of asymptotic multiscaling in sh
models of turbulence which will account for a wide varie

FIG. 8. Local deviationD, Eq. ~26! vs s for l52, b520.8 and
z50.84. Solid lines—results of minimization of the functional~41!
with unit weight, dashed lines—the same with the weighed fu
tional ~42!, ~51!. Upper panel: region210,s,21. Lower panel:
region21,s,s0.
9-10
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of trajectories of the system in the vicinity of quasisoliton
In particular, one can apply the variation procedure to fi
possible complex solitons and quasisolitons with nontrivia
rotating phases. Such objects may be important in the qu
titative description of high-level intermittency when the p
rameterb approaches the critical value21. Analytical form
of self-similar trajectories of the system found in this pap
may help one to analyze stability of nearby trajectories of
system. This is useful for describing how the system
proaches and later escapes a vicinity of quasisolitons in o
to describe their role in the statistics of intense but not s
tary events.
M.

.

.
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I hope that the analysis of dynamics of intense events
the Sabra model, presented in this paper will help in
further understanding of asymptotic multiscaling along sim
lar lines. These will be also useful for further progress in t
problem of anomalous scaling in Navier-Stokes turbulenc
least on a qualitative and maybe on semiquantitative lev
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